Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451201

RESUMO

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Neuroproteção , Zumbido/tratamento farmacológico , Zumbido/metabolismo , Ácido Glutâmico/metabolismo , Modelos Animais de Doenças , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
2.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499151

RESUMO

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Assuntos
Transportador 2 de Aminoácido Excitatório , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Sítios de Ligação , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Neurônios/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Ligação Proteica , Peptídeos/metabolismo
3.
Behav Brain Res ; 439: 114244, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470419

RESUMO

Substance abuse is a worldwide problem with serious repercussions for patients and the communities where they live. Pregabalin (Lyrica), is a medication commonly used to treat neuropathic pain. Like other analgesic medications there has been concern about pregabalin abuse and misuse. Although it was initially suggested that pregabalin, like other gabapentinoids, has limited abuse liability, questions still remain concerning this inquiry. Changes in glutamate system homeostasis are a hallmark of adaptations underlying drug dependence, including down-regulation of the glutamate transporter 1 (GLT-1; SLC1A2) and the cystine/glutamate antiporter (xCT; SLC7A11). In this study, it was found that pregabalin (90 mg/kg) produces a conditioned place preference (CPP), indicative of reinforcing effects that suggest a potential for abuse liability. Moreover, like other drugs of abuse, pregabalin also produced alterations in glutamate homeostasis, reducing the mRNA expression of Slc1a2 and Slc7a11 in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). Amoxicillin clavulanic acid, a ß-lactam antibiotic, blocked the reinforcing effects of pregabalin and normalized glutamate homeostasis. These results suggest that pregabalin has abuse potential that should be examined more critically, and that, moreover, the mechanisms underlying these effects are similar to those of other drugs of abuse, such as heroin and cocaine. Additionally, these results support previous findings showing normalization of glutamate homeostasis by ß-lactam drugs that provides a novel potential therapeutic approach for the treatment of drug abuse and dependence.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Transtornos Relacionados ao Uso de Substâncias , Humanos , Combinação Amoxicilina e Clavulanato de Potássio/metabolismo , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Pregabalina/farmacologia , Núcleo Accumbens , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , beta-Lactamas/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácido Glutâmico/metabolismo
4.
J Pharmacol Exp Ther ; 383(3): 208-216, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153003

RESUMO

Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.


Assuntos
Transportador 2 de Aminoácido Excitatório , beta-Lactamas , Animais , Masculino , Ratos , Consumo de Bebidas Alcoólicas/metabolismo , beta-Lactamas/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Receptores Ativados por Proliferador de Peroxissomo
5.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938532

RESUMO

Dysregulation of excitatory amino acid transporter 2 (EAAT2) contributes to the development of temporal lobe epilepsy (TLE). Several strategies for increasing total EAAT2 levels have been proposed. However, the mechanism underlying the oligomeric assembly of EAAT2, impairment of which inhibits the formation of functional oligomers by EAAT2 monomers, is still poorly understood. In the present study, we identified E3 ubiquitin ligase AMFR as an EAAT2-interacting protein. AMFR specifically increased the level of EAAT2 oligomers rather than inducing protein degradation through K542-specific ubiquitination. By using tissues from humans with TLE and epilepsy model mice, we observed that AMFR and EAAT2 oligomer levels were simultaneously decreased in the hippocampus. Screening of 2386 FDA-approved drugs revealed that the most common analgesic/antipyretic medicine, acetaminophen (APAP), can induce AMFR transcriptional activation via transcription factor SP1. Administration of APAP protected against pentylenetetrazol-induced epileptogenesis. In mice with chronic epilepsy, APAP treatment partially reduced the occurrence of spontaneous seizures and greatly enhanced the antiepileptic effects of 17AAG, an Hsp90 inhibitor that upregulates total EAAT2 levels, when the 2 compounds were administered together. In summary, our studies reveal an essential role for AMFR in regulating the oligomeric state of EAAT2 and suggest that APAP can improve the efficacy of EAAT2-targeted antiepileptic treatments.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Acetaminofen , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Humanos , Camundongos , Receptores do Fator Autócrino de Motilidade/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
6.
Nat Commun ; 13(1): 4714, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953475

RESUMO

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismo
7.
Brain Res Bull ; 185: 56-63, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490908

RESUMO

Chronic tobacco exposure can alter the endocannabinoid (eCB) system, consequently leading to an anxiety state. In this study, we investigated the effects of waterpipe tobacco smoke (WTS) on cannabinoid receptor 1 and 2 (CBR1 and CBR2) gene and protein expression in mesocorticolimbic brain regions. Using elevated plus maze (EPM) and open field (OF) tests, the effects of WTS exposure on withdrawal-induced anxiety-like behavior were examined. The effect of ceftriaxone (CEF), a ß-lactam known to upregulate glutamate transporter 1 (GLT-1), on anxiety and the expression of cannabinoid receptors was also determined. Male Sprague-Dawley rats were randomly assigned to four groups: 1) the Control group was exposed only to standard room air; 2) the WTS group was exposed to tobacco smoke and treated with saline vehicle; 3) the WTS-CEF group was exposed to WTS and treated with ceftriaxone; and 4) the CEF group was exposed only to standard room air and treated with ceftriaxone. Rats were exposed to WTS (or room air) for two hours per day, five days per week for a period of four weeks. Behavioral tests (EPM and OF) were conducted weekly during acute withdrawal, 24 h following WTS exposure. Rats were given either saline or ceftriaxone (200 mg/kg i.p.) for five days during Week 4, 30 min prior to WTS exposure. Withdrawal-induced anxiety was induced by WTS exposure but was reduced by ceftriaxone treatment. WTS exposure decreased CBR1 mRNA and protein expression in the NAc and VTA, but not PFC, and ceftriaxone treatment attenuated these effects. WTS exposure did not change CBR2 mRNA expression in the NAc, VTA, or PFC. These findings demonstrate that WTS exposure dysregulated the endocannabinoid system and increased anxiety-like behavior, and these effects were reversed by ceftriaxone treatment, which suggest the involvement of glutamate transporter 1 in these effects.


Assuntos
Ceftriaxona , Tabaco para Cachimbos de Água , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Ceftriaxona/farmacologia , Endocanabinoides , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Fumaça/efeitos adversos , Nicotiana/metabolismo
8.
J Parkinsons Dis ; 12(1): 295-314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34719508

RESUMO

BACKGROUND: Previous investigations have suggested that decreased expression of glutamate transporter-1 (GLT-1) is involved in glutamate excitotoxicity and contribute to the development of Parkinson's disease (PD), GLT-1 is decreased in animal models of PD. GLT-1 is mainly expressed in astrocytes, and the striatum is a GLT-1-rich brain area. OBJECTIVE: The aim was to explore the function and mechanism of astrocytic GLT-1 in PD-like changes. METHODS: In the study, PD-like changes and their molecular mechanism in rodents were tested by a behavioral assessment, micro-positron emission tomography/computed tomography (PET/CT), western blotting, immunohistochemical and immunofluorescence staining, and high performance liquid chromatography pre-column derivatization with O-pthaldialdehida after downregulating astrocytic GLT-1 in vivo and in vitro. RESULTS: In vivo, after 6 weeks of brain stereotactic injection of adeno-associated virus into the striatum, rats in the astrocytic GLT-1 knockdown group showed poorer motor performance, abnormal gait, and depression-like feature; but no olfactory disorders. The results of micro-PET/CT and western blotting indicated that the dopaminergic system was impaired in astrocytic GLT-1 knockdown rats. Similarly, tyrosine hydroxylase (TH) positive immune-staining in neurons of astrocytic GLT-1 knockdown rats showed deficit in cell count. In vitro, knockdown of astrocytic GLT-1 via RNA interference led to morphological injury of TH-positive neurons, which may be related to the abnormal calcium signal induced by glutamate accumulation after GLT-1 knockdown. Furthermore, the GLT-1 agonist ceftriaxone showed a protective effect on TH-positive neuron impairment. CONCLUSION: The present findings may shed new light in the future prevention and treatment of PD based on blocking glutamate excitotoxicity.


Assuntos
Astrócitos , Transportador 2 de Aminoácido Excitatório/metabolismo , Doença de Parkinson , Animais , Astrócitos/metabolismo , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/farmacologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia
9.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445787

RESUMO

Mechanical stress is an important factor affecting bone tissue homeostasis. We focused on the interactions among mechanical stress, glucose uptake via glucose transporter 1 (Glut1), and the cellular energy sensor sirtuin 1 (SIRT1) in osteoblast energy metabolism, since it has been recognized that SIRT1, an NAD+-dependent deacetylase, may function as a master regulator of the mechanical stress response as well as of cellular energy metabolism (glucose metabolism). In addition, it has already been demonstrated that SIRT1 regulates the activity of the osteogenic transcription factor runt-related transcription factor 2 (Runx2). The effects of mechanical loading on cellular activities and the expressions of Glut1, SIRT1, and Runx2 were evaluated in osteoblasts and chondrocytes in a 3D cell-collagen sponge construct. Compressive mechanical loading increased osteoblast activity. Mechanical loading also significantly increased the expression of Glut1, significantly decreased the expression of SIRT1, and significantly increased the expression of Runx2 in osteoblasts in comparison with non-loaded osteoblasts. Incubation with a Glut1 inhibitor blocked mechanical stress-induced changes in SIRT1 and Runx2 in osteoblasts. In contrast with osteoblasts, the expressions of Glut1, SIRT1, and Runx2 in chondrocytes were not affected by loading. Our present study indicated that mechanical stress induced the upregulation of Glut1 following the downregulation of SIRT1 and the upregulation of Runx2 in osteoblasts but not in chondrocytes. Since SIRT1 is known to negatively regulate Runx2 activity, a mechanical stress-induced downregulation of SIRT1 may lead to the upregulation of Runx2, resulting in osteoblast differentiation. Incubation with a Glut1 inhibitor the blocked mechanical stress-induced downregulation of SIRT1 following the upregulation of Runx2, suggesting that Glut1 is necessary to mediate the responses of SIRT1 and Runx2 to mechanical loading in osteoblasts.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Idoso , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Humanos , NAD/metabolismo , Estresse Mecânico
10.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440835

RESUMO

Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.


Assuntos
Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Antagomirs/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Vesículas Extracelulares/transplante , Glioma/mortalidade , Glioma/patologia , Glioma/terapia , Interferon gama/farmacologia , Estimativa de Kaplan-Meier , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microglia/citologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Regulação para Cima
11.
Placenta ; 112: 36-44, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256323

RESUMO

INTRODUCTION: Maternal immune activation (MIA) is associated with neurodevelopmental disorders in offspring. We previously demonstrated that poly(I:C)-mediated MIA alters placental and fetal brain amino acid transporter expression in rats, which could potentially play a role in altered neurodevelopment; however, the mechanism(s) underlying these changes in amino acid transporter expression remain unknown. The objective of the current study was to investigate the mechanism(s) underlying poly(I:C)-mediated changes in the expression of the amino acid transporters in the placenta. METHODS: Pregnant rats received poly(I:C) on gestational day 14 and placentas were collected 6 h later. Mass spectrometry-based proteomics of placentas was performed followed by pathway enrichment analysis. Activation of mTORC1 and its upstream regulator, AMPK, was investigated using immunoblotting. Finally, the role of mTORC1 and AMPK in regulating the expression and localization of the amino acid transporters EAAT2 and ASCT1 was investigated in the human choriocarcinoma cell line JAR. RESULTS: The impact of poly(I:C) on the placental proteome was highly sexually dimorphic. While proteomics-based pathway enrichment analysis indicated enrichment of mTOR signaling in male placentas only, further investigation revealed inhibition of mTORC1 in both male and female placentas in addition to activation of AMPK. In vitro, activation of AMPK and inhibition of mTORC1 decreased membrane localization of EAAT2 and ASCT1. DISCUSSION: Poly(I:C)-mediated MIA activates AMPK and inhibits mTORC1 in rat placenta, both of which decrease expression and membrane localization of EAAT2 and ASCT1 in vitro. Thus, AMPK/mTORC1 signaling could be a novel treatment target for alleviating MIA-mediated changes in placental amino acid transport.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/enzimologia , Complicações Infecciosas na Gravidez/imunologia , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Poli I-C , Gravidez , Ratos Sprague-Dawley , Transdução de Sinais
12.
J Laryngol Otol ; 135(7): 625-633, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34108057

RESUMO

OBJECTIVE: This study aimed to clarify the association between both hypoxia-inducible factor-1α and glucose transporter type-1 expression and survival outcome in advanced pharyngeal cancer without human papillomavirus infection. METHOD: Twenty-five oropharyngeal and 55 hypopharyngeal cancer patients without human papillomavirus infection were enrolled. All patients had stage III-IV lesions and underwent concurrent chemoradiotherapy or surgery. Hypoxia-inducible factor-1α and glucose transporter type-1 expression were investigated in primary lesions by immunohistochemistry. RESULTS: There were 41 and 39 cases with low and high hypoxia-inducible factor-1α expression, and 28 and 52 cases with low and high glucose transporter type-1 expression, respectively. There was no significant correlation between hypoxia-inducible factor-1α and glucose transporter type-1 expression. In univariate analysis, nodal metastasis, clinical stage and high hypoxia-inducible factor-1α expression, but not glucose transporter type-1 expression, predicted significantly worse prognosis. In multivariate analysis, hypoxia-inducible factor-1α overexpression was significantly correlated with poor overall survival, disease-specific survival and recurrence-free survival. CONCLUSION: High hypoxia-inducible factor-1α expression was an independent risk factor for poor prognosis for advanced human papillomavirus-unrelated pharyngeal cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Humanos , Neoplasias Hipofaríngeas/metabolismo , Neoplasias Hipofaríngeas/mortalidade , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/terapia , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/mortalidade , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/terapia , Neoplasias Faríngeas/mortalidade , Neoplasias Faríngeas/patologia , Neoplasias Faríngeas/terapia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Taxa de Sobrevida
13.
Mol Biol Rep ; 48(4): 3495-3502, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34003424

RESUMO

Glioblastoma multiform is a primary brain tumor derived from glial cells. The aim of this study is to investigate how glutamate metabolism is regulated by glutamate transporter 1 (GLT-1) degradation pathway in glioblastoma and glial cell lines. The protein expression levels of GLT-1, total ubiquitin, protein kinase C (PKC) proteins involved in the GLT-1 degradation pathway were measured by the western blot technique. Additionally, in glial and glioblastoma cells, the level of glutamate accumulated in the medium and the lysates was measured with the glutamate assay. GLT-1 protein expression was increased significantly in glioblastoma cells. The expression levels of the PKC protein and total ubiquitin were found to be decreased in glioblastoma cells although not significantly. The glutamate accumulated in the medium and lysates of glioblastoma cells is reduced compared to glial cells. Further research regarding excitotoxicity in glioblastoma focusing on GLT-1 degradation or activation pathway may create new opportunities of drug and treatment development.


Assuntos
Neoplasias Encefálicas/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Ácido Glutâmico/metabolismo , Humanos , Proteólise , Ubiquitina/metabolismo
14.
Neuroscience ; 463: 128-142, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33836247

RESUMO

Tobacco exposure has been linked to neuroinflammation and adaptive/maladaptive changes in neurotransmitter systems, including in glutamatergic systems. We examined the effects of waterpipe tobacco smoke (WTS) on inflammatory mediators and astroglial glutamate transporters in mesocorticolimbic brain regions including the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). The behavioral consequences of WTS exposure on withdrawal-induced anxiety-like behavior were assessed using elevated plus maze (EPM) and open field (OF) tests. Male Sprague-Dawley rats were randomly assigned to 3 experimental groups: a control group exposed only to standard room air, a WTS exposed group treated with saline vehicle, and a WTS exposed group treated with ceftriaxone. WTS exposure was performed for 2 h/day, 5 days/week, for 4 weeks. Behavioral tests (EPM and OF) were conducted weekly 24 h after WTS exposure, during acute withdrawal. During week 4, rats were given either saline or ceftriaxone (200 mg/kg i.p.) 30 min before WTS exposure. WTS increased withdrawal-induced anxiety, and ceftriaxone attenuated this effect. WTS exposure increased the relative mRNA levels for nuclear factor ĸB (NFĸB), tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor (BDNF) in the PFC, NAc and VTA, and ceftriaxone treatment reversed these effects. In addition, WTS decreased the relative mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2), glutamate transporter 1 (GLT-1) and cystine-glutamate transporter (xCT) in PFC, NAc and VTA, and ceftriaxone treatment normalized their expression. WTS caused neuroinflammation, alteration in relative mRNA glutamate transport expression, and increased anxiety-like behavior, and these effects were attenuated by ceftriaxone treatment.


Assuntos
Ansiedade/tratamento farmacológico , Ceftriaxona , Fumar , Tabaco para Cachimbos de Água , Sistemas de Transporte de Aminoácidos Acídicos , Animais , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , Fator 2 Relacionado a NF-E2 , NF-kappa B , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Fumaça , Fator de Necrose Tumoral alfa
15.
Neurosci Lett ; 755: 135847, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33774150

RESUMO

The development and maintenance of morphine tolerance showed association with neuroinflammation and dysfunction of central glutamatergic system (such as nitration of glutamate transporter). Recent evidence indicated that hydrogen could reduce the levels of neuroinflammation and oxidative stress, but its role in morphine tolerance has not been studied. The rats were intrathecally administered with morphine (10 µg/10 µL each time, twice/day for 5 days). Hydrogen enriched saline (HS) or saline was given intraperitoneally at 1, 3 and 10 mL/kg for 10 min before each dose of morphine administration. The tail-flick latency, mechanical threshold and thermal latency were assessed one day (baseline) before and daily for up to 5 days during morphine injection. The pro-inflammatory cytokine expressions [tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6)] (by western blotting), astrocyte activation (by immunofluorescence and western blotting), and nitration of glutamate transporter-1 (GLT-1) and glutamine synthetase (GS) (by immunoprecipitation), membrane and total expression of N-methyl-d-aspartic acid (NMDA) receptor NR1 and NR2B subunits were carried out in the spinal dorsal horns. Chronic morphine administration induced antinociceptive tolerance, and together led to increased TNF-α, IL-1ß and IL-6 expression, astrocyte activation, GLT-1 and GS nitration, increased membrane and total NR1, NR2B expression. Injection of HS attenuated morphine tolerance in a dose-dependent manner, decreased proinflammatory cytokine expression, inhibited astrocyte activation, decreased GLT-1 and GS nitration, and inhibited membrane trafficking of NMDA receptor. Our result showed that hydrogen pretreatment prevented morphine tolerance by reducing neuroinflammation, GLT-1, GS nitration, NMDA receptor trafficking in the spinal dorsal horn. Pretreatment with hydrogen might be considered as a novel therapeutic strategy for the prevention of morphine tolerance.


Assuntos
Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Glutamato-Amônia Ligase/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Morfina/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Solução Salina/administração & dosagem , Medula Espinal/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Tolerância a Medicamentos/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Glutamato-Amônia Ligase/metabolismo , Hidrogênio/administração & dosagem , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Injeções Espinhais , Masculino , Nitratos/antagonistas & inibidores , Nitratos/metabolismo , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/efeitos dos fármacos
16.
Neuroreport ; 32(4): 312-320, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470770

RESUMO

Ischemic stroke is the most frequent cause of long-term morbidity and mortality in the elderly worldwide. Mild hypothermia (32-35°C) has been found to have a neuroprotective effect against ischemic stroke. However, the protective mechanisms remain unclear. In the present study, we explore the neuroprotective effect of mild hypothermia in neuron-astrocyte cocultures by oxygen-glucose deprivation/reoxygenation (OGD/R) as well as the underlying mechanisms. Thionin staining was performed and cell viability, extracellular glutamate concentration and the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway-related proteins were detected after OGD/R. The results indicated that mild hypothermia significantly alleviated damage to Nissl bodies and increased the viability of neurons, which alleviated OGD/R-triggered neuronal injury. Furthermore, mild hypothermia significantly enhanced the phosphorylation of Akt (pAkt) and glutamate transporter-1 (GLT-1) and reduced extracellular glutamate concentration after OGD/R. When the PI3K inhibitor LY294002 was added, neuronal viability and the expression of pAkt and GLT-1 decreased, and extracellular glutamate concentration increased. The protective effect of mild hypothermia was counteracted by LY294002. There was no significant change in neuronal viability or the expression of pAkt and GLT-1 in the group treated with dihydrokainate, an inhibitor of GLT-1-function, compared with the mild hypothermia + OGD/R (HOGD) group, but extracellular glutamate concentration was increased. Consequently, mild hypothermia promoted glutamate clearance by regulating GLT-1 expression via the PI3K/Akt pathway, providing a neuroprotective effect against OGD/R injury.


Assuntos
Córtex Cerebral/citologia , Ácido Glutâmico/metabolismo , Hipotermia Induzida , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Sobrevivência Celular , Cromonas/farmacologia , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Técnicas In Vitro , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ratos
17.
Cell Mol Neurobiol ; 41(4): 687-704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32632892

RESUMO

Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a "biosignature" in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.


Assuntos
Adenosina/farmacologia , Astrócitos/patologia , Aminoácidos Excitatórios/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Corantes Fluorescentes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Glucose/deficiência , Ácido Glutâmico/metabolismo , Modelos Biológicos , Oxigênio , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
J Neurochem ; 157(4): 1284-1299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33180957

RESUMO

Diminished glutamate (Glu) uptake via the excitatory amino acid transporter EAAT2, which normally accounts for ~90% of total forebrain EAAT activity, may contribute to neurodegeneration via Glu-mediated excitotoxicity. C-terminal cleavage by caspase-3 (C3) was reported to mediate EAAT2 inactivation and down-regulation in the context of neurodegeneration. For a detailed analysis of C3-dependent EAAT2 degradation, we employed A172 glioblastoma as well as hippocampal HT22 cells and murine astrocytes over-expressing VSV-G-tagged EAAT2 constructs. C3 activation was induced by staurosporine (STR). In HT22 cells, STR-induced C3 activation-induced rapid EAAT2 protein degradation. The mutation of asparagine 504 to aspartate (D504N), which should inactivate the putative C3 cleavage site, increased EAAT2 activity in A172 cells. In contrast, the D504N mutation did not protect EAAT2 protein against STR-induced degradation in HT22 cells, whereas inhibition of caspases, ubiquitination and the proteasome did. Similar results were obtained in astrocytes. Phylogenetic analysis showed that C-terminal ubiquitin acceptor sites-but not the putative C3 cleavage site-exhibit a high degree of conservation. Moreover, C-terminal truncation mimicking C3 cleavage increased rather than decreased EAAT2 activity and stability as well as protected EAAT2 against STR-induced ubiquitination-dependent degradation. We conclude that cellular stress associated with endogenous C3 activation degrades EAAT2 via a pathway involving ubiquitination and the proteasome but not direct C3-mediated cleavage. In addition, C3 cleavage of EAAT2, described to occur in other models, is unlikely to inactivate EAAT2. However, mutation of the highly conserved D504 within the putative C3 cleavage site increases EAAT2 activity via an unknown mechanism.


Assuntos
Caspase 3/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Degeneração Neural/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico/fisiologia , Animais , Células Cultivadas , Inibidores Enzimáticos/toxicidade , Humanos , Camundongos , Estaurosporina/toxicidade , Ubiquitinação
19.
Alcohol Alcohol ; 56(2): 210-219, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33063090

RESUMO

AIM: Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that ß-lactam antibiotics restored their expression. METHODS: In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a ß-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS: Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION: Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga , Etanol/administração & dosagem , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , Ratos , beta-Lactamas/farmacologia
20.
Acta Pharmacol Sin ; 42(6): 848-860, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33028984

RESUMO

Sustained elevation of corticosterone (CORT) is one of the common causes of aging and major depression disorder. However, the role of elevated CORT in late life depression (LLD) has not been elucidated. In this study, 18-month-old female rats were subjected to bilateral adrenalectomy or sham surgery. Their CORT levels in plasma were adjusted by CORT replacement and the rats were divided into high-level CORT (H-CORT), low-level CORT (L-CORT), and Sham group. We showed that L-CORT rats displayed attenuated depressive symptoms and memory defects in behavioral tests as compared with Sham or H-CORT rats. Furthermore, we showed that glutamatergic transmission was enhanced in L-CORT rats, evidenced by enhanced population spike amplitude (PSA) recorded from the dentate gyrus of hippocampus in vivo and increased glutamate release from hippocampal synaptosomes caused by high frequency stimulation or CORT exposure. Intracerebroventricular injection of an enzymatic glutamate scavenger system, glutamic-pyruvic transmine (GPT, 1 µM), significantly increased the PSA in Sham rats, suggesting that extracelluar accumulation of glutamate might be the culprit of impaired glutamatergic transmission, which was dependent on the uptake by Glt-1 in astrocytes. We revealed that hippocampal Glt-1 expression level in the L-CORT rats was much higher than in Sham and H-CORT rats. In a gradient neuron-astrocyte coculture, we found that the expression of Glt-1 was decreased with the increase of neural percentage, suggesting that impairment of Glt-1 might result from the high level of CORT contributed neural damage. In sham rats, administration of DHK that inhibited Glt-1 activity induced significant LLD symptoms, whereas administration of RIL that promoted glutamate uptake significantly attenuated LLD. All of these results suggest that glutamatergic transmission impairment is one of important pathogenesis in LLD induced by high level of CORT, which provide promising clues for the treatment of LLD.


Assuntos
Corticosterona/metabolismo , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Glutamina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA